Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Skelet Muscle ; 12(1): 26, 2022 12 21.
Article En | MEDLINE | ID: mdl-36539856

BACKGROUND: Sarcopenia is defined as age-related low muscle mass and function, and can also describe the loss of muscle mass in certain medical conditions, such as sarcopenic obesity. Sarcopenic obesity describes loss of muscle and function in obese individuals; however, as sarcopenia is an age-related condition and obesity can occur in any age group, a more accurate term is obesity with low lean muscle mass (OLLMM). Given limited data on OLLMM (particularly in those aged < 65 years), the purpose of this study was to estimate the prevalence of OLLMM in adults aged ≥ 20 years in the USA. METHODS: Data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 and 1999-2006 were used. OLLMM was defined as an appendicular lean mass, adjusted for body mass index (BMI), cut-off point < 0.789 for males and < 0.512 for females, measured by dual-energy X-ray absorptiometry (DXA). DXA was only measured in individuals 20-59 years old in NHANES 2017-2018; we therefore utilized logistic regression models to predict OLLMM from NHANES 1999-2006 for those aged ≥ 60 years. The prevalence of OLLMM was estimated overall, and by sex, age, race/ethnicity, and clinical subgroup (high BMI, prediabetes, type 2 diabetes mellitus [T2DM], non-alcoholic fatty liver disease [NAFLD] with fibrosis, or post-bariatric surgery). Prevalence estimates were extrapolated to the USA population using NHANES sampling weights. RESULTS: We estimated that, during 2017-2018, 28.7 million or 15.9% of the USA population had OLLMM. The prevalence of OLLMM was greater in older individuals (8.1%, aged 20-59 years vs 28.3%, aged ≥ 60 years), highest (66.6%) in Mexican-American females aged ≥ 60 years, and lowest (2.6%) in non-Hispanic Black males aged 20-59 years. There was a higher prevalence of OLLMM in adults with prediabetes (19.7%), T2DM (34.5%), NAFLD with fibrosis (25.4%), or post-bariatric surgery (21.8%), compared with those without each condition. CONCLUSIONS: Overall, the burden of OLLMM in the USA is substantial, affecting almost 30 million adults. The prevalence of OLLMM increased with age, and among those with prediabetes, T2DM, NAFLD with fibrosis, or post-bariatric surgery. A unified definition of OLLMM will aid diagnosis and treatment strategies.


Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Prediabetic State , Sarcopenia , Male , Adult , Female , Humans , Aged , Young Adult , Middle Aged , Sarcopenia/epidemiology , Nutrition Surveys , Non-alcoholic Fatty Liver Disease/complications , Diabetes Mellitus, Type 2/complications , Prevalence , Prediabetic State/complications , Obesity/complications , Obesity/epidemiology , Fibrosis , Muscles , Body Composition
2.
Mol Metab ; 55: 101392, 2022 01.
Article En | MEDLINE | ID: mdl-34781035

OBJECTIVE: Obesity-linked type 2 diabetes (T2D) is a worldwide health concern and many novel approaches are being considered for its treatment and subsequent prevention of serious comorbidities. Co-administration of glucagon like peptide 1 (GLP-1) and peptide YY3-36 (PYY3-36) renders a synergistic decrease in energy intake in obese men. However, mechanistic details of the synergy between these peptide agonists and their effects on metabolic homeostasis remain relatively scarce. METHODS: In this study, we utilized long-acting analogues of GLP-1 and PYY3-36 (via Fc-peptide conjugation) to better characterize the synergistic pharmacological benefits of their co-administration on body weight and glycaemic regulation in obese and diabetic mouse models. Hyperinsulinemic-euglycemic clamps were used to measure weight-independent effects of Fc-PYY3-36 + Fc-GLP-1 on insulin action. Fluorescent light sheet microscopy analysis of whole brain was performed to assess activation of brain regions. RESULTS: Co-administration of long-acting Fc-IgG/peptide conjugates of Fc-GLP-1 and Fc-PYY3-36 (specific for PYY receptor-2 (Y2R)) resulted in profound weight loss, restored glucose homeostasis, and recovered endogenous ß-cell function in two mouse models of obese T2D. Hyperinsulinemic-euglycemic clamps in C57BLKS/J db/db and diet-induced obese Y2R-deficient (Y2RKO) mice indicated Y2R is required for a weight-independent improvement in peripheral insulin sensitivity and enhanced hepatic glycogenesis. Brain cFos staining demonstrated distinct temporal activation of regions of the hypothalamus and hindbrain following Fc-PYY3-36 + Fc-GLP-1R agonist administration. CONCLUSIONS: These results reveal a therapeutic approach for obesity/T2D that improved insulin sensitivity and restored endogenous ß-cell function. These data also highlight the potential association between the gut-brain axis in control of metabolic homeostasis.


Glucagon-Like Peptide 1/metabolism , Obesity/metabolism , Peptide YY/metabolism , Animals , Blood Glucose/metabolism , Body Weight/drug effects , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Diet , Eating/drug effects , Energy Intake/drug effects , Energy Metabolism/drug effects , Gastric Bypass , Glucagon-Like Peptide-1 Receptor/metabolism , Hypothalamus , Insulin Resistance/physiology , Insulin-Secreting Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/physiopathology , Peptide YY/physiology , Weight Loss
3.
PLoS One ; 16(6): e0252426, 2021.
Article En | MEDLINE | ID: mdl-34086718

Quantification of endogenous biomarkers in clinical studies requires careful evaluation of a number of assay performance parameters. Comparisons of absolute values from several clinical studies can enable retrospective analyses further elucidating the biology of a given biomarker across various study populations. We characterized the performance of a highly multiplex bioanalytical method for quantification of phosphatidylinositols (PI). Hydrophilic interaction chromatography (HILIC) and multiple reaction monitoring (MRM) were employed for targeted multiplex quantification. Odd-chain PI species that are not normally present in human plasma were utilized as surrogate analytes (SA) to assess various assay performance parameters and establish a definitive dynamic linear range for PI lipids. To correct for batch effects, Systematic Error Removal using Random Forest (SERRF) normalization algorithm was employed and used to bridge raw values between two clinical studies, enabling quantitative comparison of their absolute values. A high throughput method was developed, qualified, transferred to an automation platform and applied to sample testing in two clinical trials in healthy volunteers (NCT03001297) and stable Coronary Artery Disease (CAD, NCT03351738) subjects. The method demonstrated acceptable precision and accuracy (±30%) over linear range of 1-1000 nM for SA and 8-fold dilutional linearity for endogenous PI. We determined that mean-adjusted average QC performed best for normalization using SERRF. The comparison of two studies revealed that healthy subject levels of PI are consistently higher across PI species compared to CAD subjects identifying a potential lipid biomarker to be explored in future studies.


Coronary Artery Disease/blood , Phosphatidylinositols/blood , Chromatography, High Pressure Liquid/methods , Clinical Trials as Topic , Data Interpretation, Statistical , Humans , Software
4.
Sci Transl Med ; 13(590)2021 04 21.
Article En | MEDLINE | ID: mdl-33883272

Cardiovascular disease (CVD) is the leading global cause of death, and treatments that further reduce CV risk remain an unmet medical need. Epidemiological studies have consistently identified low high-density lipoprotein cholesterol (HDL-C) as an independent risk factor for CVD, making HDL elevation a potential clinical target for improved CVD resolution. Endothelial lipase (EL) is a circulating enzyme that regulates HDL turnover by hydrolyzing HDL phospholipids and driving HDL particle clearance. Using MEDI5884, a first-in-class, EL-neutralizing, monoclonal antibody, we tested the hypothesis that pharmacological inhibition of EL would increase HDL-C by enhancing HDL stability. In nonhuman primates, MEDI5884 treatment resulted in lasting, dose-dependent elevations in HDL-C and circulating phospholipids, confirming the mechanism of EL action. We then showed that a favorable lipoprotein profile of elevated HDL-C and reduced low-density lipoprotein cholesterol (LDL-C) could be achieved by combining MEDI5884 with a PCSK9 inhibitor. Last, when tested in healthy human volunteers, MEDI5884 not only raised HDL-C but also increased HDL particle numbers and average HDL size while enhancing HDL functionality, reinforcing EL neutralization as a viable clinical approach aimed at reducing CV risk.


Lipoproteins, HDL , Proprotein Convertase 9 , Animals , Antibodies, Monoclonal , Cholesterol, HDL , Lipase , Primates
5.
Mol Cell Proteomics ; 19(6): 971-993, 2020 06.
Article En | MEDLINE | ID: mdl-32265294

The onset of obesity-linked type 2 diabetes (T2D) is marked by an eventual failure in pancreatic ß-cell function and mass that is no longer able to compensate for the inherent insulin resistance and increased metabolic load intrinsic to obesity. However, in a commonly used model of T2D, the db/db mouse, ß-cells have an inbuilt adaptive flexibility enabling them to effectively adjust insulin production rates relative to the metabolic demand. Pancreatic ß-cells from these animals have markedly reduced intracellular insulin stores, yet high rates of (pro)insulin secretion, together with a substantial increase in proinsulin biosynthesis highlighted by expanded rough endoplasmic reticulum and Golgi apparatus. However, when the metabolic overload and/or hyperglycemia is normalized, ß-cells from db/db mice quickly restore their insulin stores and normalize secretory function. This demonstrates the ß-cell's adaptive flexibility and indicates that therapeutic approaches applied to encourage ß-cell rest are capable of restoring endogenous ß-cell function. However, mechanisms that regulate ß-cell adaptive flexibility are essentially unknown. To gain deeper mechanistic insight into the molecular events underlying ß-cell adaptive flexibility in db/db ß-cells, we conducted a combined proteomic and post-translational modification specific proteomic (PTMomics) approach on islets from db/db mice and wild-type controls (WT) with or without prior exposure to normal glucose levels. We identified differential modifications of proteins involved in redox homeostasis, protein refolding, K48-linked deubiquitination, mRNA/protein export, focal adhesion, ERK1/2 signaling, and renin-angiotensin-aldosterone signaling, as well as sialyltransferase activity, associated with ß-cell adaptive flexibility. These proteins are all related to proinsulin biosynthesis and processing, maturation of insulin secretory granules, and vesicular trafficking-core pathways involved in the adaptation of insulin production to meet metabolic demand. Collectively, this study outlines a novel and comprehensive global PTMome signaling map that highlights important molecular mechanisms related to the adaptive flexibility of ß-cell function, providing improved insight into disease pathogenesis of T2D.


Diabetes Mellitus, Type 2/metabolism , Hyperglycemia/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Obesity/metabolism , Proinsulin/biosynthesis , Proteome/metabolism , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/genetics , Disease Models, Animal , Focal Adhesions , Gene Ontology , Glucose/metabolism , Hyperglycemia/genetics , Insulin Secretion , Insulin-Secreting Cells/pathology , MAP Kinase Signaling System/genetics , Mice , Mice, Inbred C57BL , Obesity/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , Proinsulin/metabolism , Protein Interaction Maps , Protein Processing, Post-Translational , Proteome/genetics , Proteomics , Renin-Angiotensin System , Sialic Acids/metabolism , Tandem Mass Spectrometry , Ubiquitination
6.
J Proteome Res ; 18(9): 3245-3258, 2019 09 06.
Article En | MEDLINE | ID: mdl-31317746

For the treatment of patients with prediabetes or diabetes, clinical evidence has emerged that ß-cell function can be restored by glucose-lowering therapeutic strategies. However, little is known about the molecular mechanisms underlying this functional adaptive behavior of the pancreatic ß-cell. This study examines the dynamic changes in protein expression and phosphorylation state associated with (pro)insulin production and secretory pathway function mediated by euglycemia to induce ß-cell rest in obese/diabetic db/db islet ß-cells. Unbiased quantitative profiling of the protein expression and phosphorylation events that occur upon ß-cell adaption during the transition from hyperglycemia to euglycemia was assessed in isolated pancreatic islets from obese diabetic db/db and wild-type (WT) mice using quantitative proteomics and phosphoproteomics together with bioinformatics analysis. Dynamic changes in the expression and phosphorylation of proteins associated with pancreatic ß-cell (pro)insulin production and complementary regulated-secretory pathway regulation were observed in obese diabetic db/db islets in a hyperglycemic environment, relative to WT mouse islets in a normal euglycemic environment, that resolved when isolated db/db islets were exposed to euglycemia for 12 h in vitro. By similarly treating WT islets in parallel, the effects of tissue culture could be mostly eliminated and only those changes associated with resolution by euglycemia were assessed. Among such regulated protein phosphorylation-dependent signaling events were those associated with COPII-coated vesicle-dependent ER exit, ER-to-Golgi trafficking, clathrin-coat disassembly, and a particular association for the luminal Golgi protein kinase, FAM20C, in control of distal secretory pathway trafficking, sorting, and granule biogenesis. Protein expression and especially phosphorylation play key roles in the regulation of (pro)insulin production, correlative secretory pathway trafficking, and the restoration of ß-cell secretory capacity in the adaptive functional ß-cell response to metabolic demand, especially that mediated by glucose.


Calcium-Binding Proteins/genetics , Diabetes Mellitus, Type 2/drug therapy , Extracellular Matrix Proteins/genetics , Prediabetic State/drug therapy , Proteomics , Animals , Blood Glucose/drug effects , COP-Coated Vesicles/genetics , Diabetes Mellitus, Type 2/blood , Disease Models, Animal , Glucose/metabolism , Golgi Apparatus/drug effects , Humans , Hyperglycemia/drug therapy , Hyperglycemia/genetics , Insulin/biosynthesis , Insulin/genetics , Insulin-Secreting Cells/drug effects , Mice , Mice, Inbred NOD , Obesity/drug therapy , Obesity/genetics , Prediabetic State/blood , Protein Transport/drug effects
7.
Commun Biol ; 2: 92, 2019.
Article En | MEDLINE | ID: mdl-30854484

Systemic administration of bio-therapeutics can result in only a fraction of drug reaching targeted tissues, with the majority of drug being distributed to tissues irrelevant to the drug's site of action. Targeted delivery to specific organs may allow for greater accumulation, better efficacy, and improved safety. We investigated how targeting plasmalemma vesicle-associated protein (PV1), a protein found in the endothelial caveolae of lungs and kidneys, can promote accumulation in these organs. Using ex vivo fluorescence imaging, we show that intravenously administered αPV1 antibodies localize to mouse lungs and kidneys. In a bleomycin-induced idiopathic pulmonary fibrosis (IPF) mouse model, αPV1 conjugated to Prostaglandin E2 (PGE2), a known anti-fibrotic agent, significantly reduced collagen content and fibrosis whereas a non-targeted PGE2 antibody conjugate failed to slow fibrosis progression. Our results demonstrate that PV1 targeting can be utilized to deliver therapeutics to lungs and this approach is potentially applicable for various lung diseases.


Drug Carriers , Drug Delivery Systems , Idiopathic Pulmonary Fibrosis/drug therapy , Membrane Proteins/metabolism , Animals , Biomarkers , Bleomycin/adverse effects , Dinoprostone/metabolism , Disease Models, Animal , Gene Expression , Humans , Idiopathic Pulmonary Fibrosis/etiology , Idiopathic Pulmonary Fibrosis/pathology , Immunohistochemistry , Kidney/metabolism , Kidney/pathology , Lung/drug effects , Lung/metabolism , Lung/pathology , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice
8.
Diabetes ; 68(1): 131-140, 2019 01.
Article En | MEDLINE | ID: mdl-30305366

The onset of common obesity-linked type 2 diabetes (T2D) is marked by exhaustive failure of pancreatic ß-cell functional mass to compensate for insulin resistance and increased metabolic demand, leading to uncontrolled hyperglycemia. Here, the ß-cell-deficient obese hyperglycemic/hyperinsulinemic KS db/db mouse model was used to assess consequential effects on ß-cell functional recovery by lowering glucose homeostasis and/or improving insulin sensitivity after treatment with thiazolidinedione therapy or glucagon-like peptide 1 receptor agonism alone or in combination with sodium/glucose cotransporter 2 inhibition (SGLT-2i). SGLT-2i combination therapies improved glucose homeostasis, independent of changes in body weight, resulting in a synergistic increase in pancreatic insulin content marked by significant recovery of the ß-cell mature insulin secretory population but with limited changes in ß-cell mass and no indication of ß-cell dedifferentiation. Restoration of ß-cell insulin secretory capacity also restored biphasic insulin secretion. These data emphasize that by therapeutically alleviating the demand for insulin in vivo, irrespective of weight loss, endogenous ß-cells recover significant function that can contribute to attenuating diabetes. Thus, this study provides evidence that alleviation of metabolic demand on the ß-cell, rather than targeting the ß-cell itself, could be effective in delaying the progression of T2D.


Diabetes Mellitus, Type 2/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Animals , Flow Cytometry , Glucose/pharmacology , Glucose Tolerance Test , Immunohistochemistry , Mice
9.
Endocrinology ; 159(2): 895-906, 2018 Feb 01.
Article En | MEDLINE | ID: mdl-29244064

Mammalian metabolism has evolved to adapt to changes in nutrient status. Insulin, the key anabolic hormone, facilitates intracellular storage of nutrient fuels and plays a pivotal role in the transition away from catabolism upon refeeding. Although circulating insulin relative to nutrient levels has been well characterized during fasting and refeeding, how pancreatic ß-cell biology caters to acute changes in insulin demand has not been sufficiently addressed. Here, we examined the dynamics of (pro)insulin production and associated changes in ß-cell ultrastructure during refeeding after a 72-hour fast in male rats. We found that fasted ß-cells had marked degranulation, which inversely coordinated with the upregulation of autophagolysomal and lysosomal organelles. There was also expanded Golgi that correlated with enhanced (pro)insulin biosynthetic capacity but, conversely, blunted in vivo insulin secretion. Within 4 to 6 hours of refeeding, proinsulin biosynthesis, cellular ultrastructure, in vivo insulin secretion, and glucose tolerance normalized to levels near those of fed control animals, indicating a rapid replenishment of normal insulin secretory capacity. Thus, during a prolonged fast, the ß-cell protects against hypoglycemia by markedly reducing insulin secretory capacity in vivo but is simultaneously poised to efficiently increase (pro)insulin production upon refeeding to effectively return normal insulin secretory capacity within hours.


Eating/physiology , Fasting/physiology , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Starvation/metabolism , Animals , Cells, Cultured , Male , Rats , Rats, Wistar
10.
Mol Metab ; 6(9): 958-973, 2017 09.
Article En | MEDLINE | ID: mdl-28951821

BACKGROUND: Although the insulin-producing pancreatic ß-cells are quite capable of adapting to both acute and chronic changes in metabolic demand, persistently high demand for insulin will ultimately lead to their progressive dysfunction and eventual loss. Recent and historical studies highlight the importance of 'resting' the ß-cell as a means of preserving functional ß-cell mass. SCOPE OF REVIEW: We provide experimental evidence to highlight the remarkable plasticity for insulin production and secretion by the pancreatic ß-cell alongside some clinical evidence that supports leveraging this unique ability to preserve ß-cell function. MAJOR CONCLUSIONS: Treatment strategies for type 2 diabetes mellitus (T2DM) targeted towards reducing the systemic metabolic burden, rather than demanding greater insulin production from an already beleaguered ß-cell, should be emphasized to maintain endogenous insulin secretory function and delay the progression of T2DM.


Insulin Secretion/physiology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/physiology , Insulin/biosynthesis , Animals , Cell Plasticity/physiology , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Humans , Insulin/metabolism , Signal Transduction
11.
Bioorg Med Chem Lett ; 20(19): 5673-6, 2010 Oct 01.
Article En | MEDLINE | ID: mdl-20805029

The phenylacetamide 1 represents the archtypical glucokinase activator (GKA) in which only the R-isomer is active. In order to probe whether the chiral center could be replaced, we prepared a series of olefins 2 and show in the present work that these compounds represent a new class of GKAs. Surprisingly, the SAR of the new series paralleled that of the saturated derivatives with the exception that there was greater tolerance for larger alkyl and cycloalkyl groups at R(2) region in comparison to the phenylacetamides. In normal Wistar rats, the 2,3-disubstituted acrylamide analog 10 was well absorbed and demonstrated robust glucose lowering effects.


Acrylamides/chemistry , Benzeneacetamides/chemistry , Glucokinase/chemistry , Hypoglycemic Agents/chemistry , Sulfones/chemistry , Acrylamides/chemical synthesis , Acrylamides/pharmacokinetics , Animals , Benzeneacetamides/chemical synthesis , Benzeneacetamides/pharmacokinetics , Glucokinase/metabolism , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacokinetics , Rats , Rats, Wistar , Structure-Activity Relationship , Sulfones/chemical synthesis , Sulfones/pharmacokinetics
...